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ABSTRACT

Let ) be a sequence of vectors in R. The box spline M_. is

defined as the distribution given by

n

M- , 1 ,f > A(i)&i)dX, , e C (R ).
(0,1 ] n  i=1 c

Suppose that - contains a basis for R . Then m. e L (RM). Let V = z.

Consider the translates M := M-(e-v), v e V. Is is known that (M) is
v v V

linearly dependent unless

(*1 Idet ZI - 1 for all bases Z C E.

This report demonstrates that, under condition (*M, (My) is locally
VV

linearly independent, i.e.,
{M ; supp M r A*€

v V

is linearly independent over any open set A contained in some component of

R \K(---), where
nK(_=) := u [-=\z + ) u(i).

<\Z>*R ue znii
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SIGNIFICANCE AND EXPLANATION

In early 1970's, the finite element analysts were interested in the space

spanned by certain translates of one element. Recently, with the appearance

of box splines, people are interested in the space spanned by certain

-'W a-.2
translates of one box spline. Such a space hee-been proved useful in certain

approximation problems. This report studies some properties of this space.
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LOCAL LINEAR INDEPENDENCE OF THE TRANSLATES OF A BOX SPLINE

Rong-Qing Jia

Let us begin with some notations. For a set S, we denote by ISI the

cardinality of S. For a function f defined on a topological space X, its

support is denoted by supp f. Let IF denote the m-dimensional real vector

rM - 1  rn-I m
space. We identify R with R x {0} C R * We use x(r) for the r-th

entry of the vector x e R ; i.e.

x=

With the norm

1x = sup fjIx(r)ll,

IP becomes a normed vector space. By Br(y) we mean the ball

Lx e R m; Ix-yl < r). If A and B are two sets in IF, then

A + B := {a + b; a e A, b e B).

The set A-B is defined in the same fashion. We emphasize that the set

fx e A; x e B) is denoted by A\B rather than A-B. With A C Rn we

denote by <A> the affine span of A. Let e (i=1,...,) be the unit

icoordinator vectors in R that is, e (J) - where 6. are the

Kronecker signs. For a function f defined on a domain in RI, we use the

notation Dif for the partial derivative with respect to its i-th argument of

the function f. We also use the notation D : y ) Y(i)Dif. Also, we define

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-8210950.
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the difference operator V by the rule V f - f-f(o-y). Finally, we denoteY Y

by C'(Rm) the space of all C7-functions with compact support in IF.
c

Box splines are introduced by [BD] and [BHI]. Here we follow [BH1], and

give a brief description for them. Let I . ° pt n be n vectors in IF.

n
Let - Then the box spline M- is defined as the distribution

nHz- + f OU (i)id'oec(X
[0,1 n i=i c

This MK is nonnegative and

supp M_= [-] ,{yx(e)F: X 8 [0,i-}. (1)

Moreover,

M. e L(d) C C
(d-i)

where

m
d := max {r: <--\Z> = R for all Z C with IZI = r).

If I1 ) m, then M. agrees with some polynomial of degree <1I1-m on each

connected component of the complement of

{[-\ZJ + I n H C Z, <-\Z> * m,.
H

For the derivatives of box splines, we have the following formula:

for E e 2'

DI-L \ - . ( - =vM.

Let a be a mapping from to R. Then the above formula together with

summation by parts gives

DQ ( a(J)M.(-J)) , I (V a)(J)M. .. (-J). (2)

-2-



If 2 contains a basis for IF, then M. is a function in L . We

consider the collection of translates M :- M(*-v), v e v 5 , for the box~v

spline M :- M.. It was shown by [BH1] that (Mv is linearly dependent

unless

Idet ZI - I for all bases Z C 3. (3)

Later, CDM] showed that condition (3) is also sufficient for (My)V  to be

linearly independent. Independently, [J] gave a more elementary proof for

this fact. When m - 2 and - {e, e2, e I+e 2}, [BH2] got a stronger

result that (My)v is locally linearly independent, i.e.,

{My supp Nv ) A * 01 is linearly independent over any open set A

contained in some component of R 2\{(x1 ,x2 )1 x1, x2 or x1-x2 e Z1. A question

naturally arises: Whether can this result be extended to general -? The

purpose of this paper is to give an affirmative answer to this question. Our

result is

Theorem. Let n be a sequence of vectors in R. Suppose that

(i) 3 contains a basis for JP,

(ii) Idet ZI - 1 for all bases Z C E.

mLet V : Z . Also, for any v e V, let mv t .(*-v) Then (v --- - eVM.Ten() is

locally linearlX independent, i.e.,

N v; suppM ln A )

is linearly independent over any open set A contained in some component of

where

. n i
K(-):- U (-\Z) + Y u(n)c •

<--\ z>,- Iezn i=-1

-3-



Proof. The proof proceeds by induction on [- The case 1i - 1 is

trivial (see, e.g., [BI Lemma 5.1.]). Suppose that the theorem has been

proved for any ' with <I ' .

Without loss of any generality, we may assume that - containes all the

unit coordinate vectors, i.e.,

{e1 . . e } e C -

(see [J]). There are two possible cases:

Case 1. There exists some ek such that <e > n <-\e> 0.
k k k

m
Case 2. The complement of Case 1; i.e., <-v\e > = R for every

k

In case 1, we may assume

<e > n <z\e > - 0.mm

m-1
Then (-\e ) R . By the definition of K(-=), we have

R + jem c K(-:), for any jez. (4)

Al so,

K(_-) - K(=\e,) x I + Ze , (5)

where Im :-{ter; 0 ( t ( 11.

Let A be an open set contained in a component of i'\K(=). Let

VA - VA, . (v e , ,upp m.e-v)nr A 0 0).

Suppose

Y a(v)M.(x-v) - 0 for all x e A. (6)
vevA

We want to prove that

a(v) - 0 for all v e v . (7)
A

-4-



Pick a point x e A. Let x' :- x - x(m)em . Then x' e R" - 1 and

x - x, + x(m)e . Since x 9 K(), (4) tells us that x(m) P Z. Assume

i < x(m) < i + 1. Similarly, let v' :- v - v(m)e%. Then v - v' + v(m)e .

It is easily seen from the definition of M- that

M.(x-v) - Mr\e (x'-v')M e (x(m)-v(m)). (8)
m m

Since A is an open set, (5) tells us that there exists an open set A' such

that A' x {x(m)} CA and

x' e A' C some component of Ir I\K( \eM).

By (8), v e VA  implies that v(m) - i, and that

supp M\e.m (-v')) A' * 0.

This is to say that v e VA implies that v(m) i and v' e VA,,\em . Thus

(6) yields

va(v' + ie)M- m (x'-v') = 0, for all v' e A'.

m

By induction hypothesis

a(v' + ie) - 0 for all v' e VAI,\e
m \e m

This proves (7).

Case 2. (-\e) = I for any k =

This case is more complicated. We need several lemmas.

Lemma 1. Let A be an open set contained in some component of

If supp M. l A 0 9, then supp M. D A. In particular, v e vA

implies that supp K.(.-v) D A.

Proof. Since A is open, supp Mr A 1 9 implies that MI(x) > 0 for

some x e A. Let C be the component of R \K( ) which contains A. Then

C is open and connected. If supp K_ .I A, then A n (R supp M.) is a

nonempty open set. There exists y e R and v > 0 such that

-5-



Br (Y) C A r) (I \supp M=) C C.

Since M. is a polynomial on C, and since KL vanishes on B (y), hence
M r

N- vanishes on the whole C. This contradicts the fact that x e A C C and

M_(x) > 0. Thus Lemma I is proved.

Lemma 2. If y e supp M-, and if y + e Bupp L, then

y e supp M_ .

Proof. Without loss of any generality, we may assume i = n. By (1),

n
there exist X and U e [0,1] such that

nY + En i A(i) i  (9)

n
Y - 1 ~) i  (10)

If ji n  0, then
n-i

y f l ai) i e supp K\.
i-1 n

Thus we may assume n > 0 in the following arguments. Subtracting (10) from

(9) gives
n

= I i .

i-1
It follows that

n-i
(1 + Uin n Kn

i-i

Since 1 + -A > 0, we obtain
n n

n

n n-An i"

Substitute the above expression to (10):

n-1 n-i Xi-Vi  n-i

y Y U I + 7 " n -A Ei "i i
i-1 i-i +n-T -ni

-6-



where

i ( -n +i~n

nfvX = .n+U n

It is clear that

V 1 0 and Ai( 1 n -P n

n n

Therefore y e supp m \ This finishes the proof of Lemma 2.
n

Before stating Lemma 3, we make some conventions. As before, A is an

open set contained in a component of K( ). For

V , v 2 e vA m {v e Z supp 1,1(-v) n A w p1, ye write

If and only if

Vl M V2 , or v1 -v 2 e E, or v2 -v I e .

For u, w e VA , we write

urn w

if and only if there exist v1 ,...,vj e VA such that

u - v 1 , w - v and vi - V (i-1,...,J-1).

Clearly, 0 is an equivalence relation on VA-

Lemma 3. For any u, w eVA

u W w.

Proof. The proof proceeds by induction on I2j. The case - is

trivial. Suppose that 151 > m, and that this lemma is true for any 2'

with ' 1=1- I.

Since contains a basis for ?P, without loss of any generality, we

may assume i - e (i' 1 ... 1')" Suppose

-7-



Sbe + ... +bem+1 11mm

Since det Z I 1 for any basis Z C 'R, we must have

b. - -1, 0 or 1 (i-l,...,m).1

After an appropriate coordinate transform, we may assume

Cm+l= e1 + ... + ek (k . (11)

-Since <'\t >-r, the set V is nonempty. Also, A is

m
contained in same component of R \K(-\&+ ). Furthermore,

supp M U\gm+ 1 C supp M... shows that VA,-\Em+1 C VA.

Pick an element v. e V A,E\Em+ 1  By induction hypothesis,

v 0 v 0  for any u e VA.- \ •
-m+1

We want to prove

u W v0 for any v e VA.

Let u e vA . Then there exist some x0 e A and r > 0 such that

B r(x 0) C A and x - u e supp M.. for any x e Br (x 0). Hence there exists

x Br (XO) such that
n

x - u i-i1 1

with

0 < A.< I all i, )i +A I all i,j,

and A # whenever i J.

Without loss of any generality, we may assume

1> A > ... > A k > 00

Subcase 1. Xk + X m+l > 1.

In this case,

x u + I). + Ai.. e supp .
ill k+l<i<n' 1

M+1
i*m+lt--



Hence u + Cm+1 ev A,:\Cm+1 and therefore u + Em+,, v0" But

u u + Cm+l" We conclude that u 0 v0 .

Subcase 2. A1 + X m+l 1.

In this case,

k
x -u + X + )e + e supp M

imi i (i i 1

i*m+l

It follows that u e V . Therefore u v 0.A,-3+1

Subcase 3. X I + Xm+ > 1 and Xk + Xm+1 < 1.

Let j be the largest integer such that X j + X > I. Let

i k
yi := ) (X + X " 1)e + ): (X + M+1 )e + z, (i0,1,..,J), (12)r1r m+1 r +r= 1 r-i+

where

Z +l(r~ n r r

r*m+ 1

We claim that

y. e supp m-, i = O,1,...,j. (13)

Indeed, it follows from (11) that

ei m+1 e
1( r~m

r*i

Substituting the above expression into (12), we obtain

i-i kYi I (kr-xi)er + r I (1-(X i- r ))e r + (X i*Xm*1"1Am+1 + Z.

r=1 r=i+1

This proves (13). Furthermore, it is obvious that

Yj e supp N &m+1' (14)

-9-



Also, we have

X - U -O

and yi- 1  Yi + ei (i-l,...,j).

Let

Wi : x- Yi i-O,l,...,J).

Then u - w and wi = w_ + e. (i=1,.,j) Hence w e By (13),
0. i-1 3.

x - W e supp M.. Therefore w. e V . Moreover, by (14), we havei i A
X m + supp. and wj e vA, .* Thus wi = v0, and therefore

X up m 19M+1
u v0 . The proof of Lemma 3 is complete.

we are now in a position to prove our theorem in Case 2. Let A be an

open set contained in some component of Rm\K(-). Suppose that

I a(v)M_(x-v) - 0 for all x e A.
vev

A

Pick v. e vA . We claim

a(v) - a(v0) for all v e VA (15)

Since v - v0 by Lemma 3, there exist vl,...,vk e vA such that v - vk and

vi - vi_ (i-1,...,k). Thus proving (15) reduces to proving the following

statement: If v1, v2 e VA and v2-v1 = for some i, then

a(vl) = a(v 2). To this end, we let

a(v) := a(v ) for v e R \VA

Then

a(v)M_(x-v) 0 for all x e A.
veV

It follows that

D a(v)IL(.-v)) 0 on A;
ivev

that is

ta V a(v)M.\, (x-v) = 0 for all x e A.
veV i -I

-10-



By induction hypothesis,

V a(v) -0 for all v e v A,\ (16)

By Leuma 1, vI and v2 e VA  imply that

supp M..("-vk) D A (k-1,2).

It follows that

V x e A, 14.(x-vk) > 0 (k-1,2).

This is to say

x - v2 e supp m and x - v 2 + Ci e supp M-,_

By Lemma 2, we have

vxeA, x- v2 e supp

Therefore v 2  -V, By (16),

a(v2) - a(v2-Fi ) 0.

This shows that a(v2 ) = a(vl), and proves our claim (15).

Now we have a(v) = a(vO) for all v e V. Thus, for x e A,

o0- [ a(v)M,(x-v) - a(v0 ) - a(V
vev veV

using the fact . M..(x-v) 1. Finally, we get the desired result:
veV

a(v) =a(v) 0 for all v eV

Postscript. This work was done in the summer of 1983. Since then I have

become aware of the research announcement "Some Results on Box Splines" by

W. Dahmen and C. A. Micchelli in which they state a result which covers the

main result of this paper. However, the proof presented here seems more

elementary and simple than theirs.

-11-
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20. Abstract (cont.)

Suppose that E contains a basis for JP. Then N e 1e(N). Lt V - .

Oonsider the translates M4 :- IL(.-v), v e V. Is is known that (NM) is

linearly dependent unless

(M) Idot ZI - I for all bases Z C 3.

This report demonstrates that, under condition (*), (My) is locally

linearly independent, i.e.,

(M 0 supp 14 r) A P F

is linearly independent over any open set A contained in some component of

t X(, where
n

(S) - U [EZ] + I e u(i
(E-Z)R un i- I
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